## Registration open for: DWL Workshop and Webinar Series





**Sydney** 2 Feb 2026

Scan to register for the 4th DWL Workshop, proudly sponsored by the Australian National Fabrication Facility (ANFF).

Join leading researchers, scientists, and micro/nanofabrication experts on Monday, 2 February 2026, at the University of Sydney for a one-day event exploring the latest advancements in direct write lithography (DWL)—including electron, photon, ion beam technologies, and more.



Registration also includes access to a series of educational webinars commencing in November 2025.

## Want to present at the workshop?

We're calling on researchers, scientists, and experts in micro and nanofabrication to share their insights at the "Innovative Research in Direct Write Lithography Workshop." If you're working on new techniques, applications, or advancements in direct write lithography, we want to hear from you. For details on how to submit your abstract, scan the QR code on the right or <u>click here</u>.



## Workshop keynote speakers

## Gerald G. Lopez, Ph.D.



Director of Operations and Business & Center Associate Director Singh Center for Nanotechnology University of Pennsylvania | MAEBL Co-Founder and Board Chair | EIPBN Operations Trustee



John S. Petersen Scientific Director of Lithography, AttoLab & Å Patterning at imec & Adjunct Professor at UMD

|     | Melb,<br>Syd              | Adelaide                  | Perth                     | Berlin                  | NY                       | LA                       | Topic / Title                                                   | Facilitator / Speaker                                      |
|-----|---------------------------|---------------------------|---------------------------|-------------------------|--------------------------|--------------------------|-----------------------------------------------------------------|------------------------------------------------------------|
| W1  | AEDT<br>11:00<br>06.11.25 | ACDT<br>10:30<br>06.11.25 | AWST<br>08:00<br>06.11.25 | CET<br>1:00<br>06.11.25 | EST<br>19:00<br>05.11.25 | PST<br>16:00<br>05.11.25 | 50 Years of Reactive Ion Etching in Microelectronics            | Christophe Vallee<br>(University at Albany)                |
| W2* | AEDT<br>16:00<br>27.11.25 | ACDT<br>15:30<br>27.11.25 | AWST<br>13:00<br>27.11.25 | CET<br>6:00<br>27.11.25 | EST<br>0:00<br>27.11.25  | PST<br>21:00<br>26.11.25 | The Physics and Chemistry of<br>Plasma Etching (Part I)         | Henri Jansen <sup>⋆</sup><br>(DTU)                         |
| W3* | AEDT<br>16:00<br>11.12.25 | ACDT<br>15:30<br>11.12.25 | AWST<br>13:00<br>11.12.25 | CET<br>6:00<br>11.12.25 | EST<br>0:00<br>11.12.25  | PST<br>21:00<br>10.12.25 | The Physics and Chemistry of<br>Plasma Etching (Part II)        | Henri Jansen <sup>⋆</sup><br>(DTU)                         |
| W4  | AEDT<br>12:00<br>29.01.26 | ACDT<br>11:30<br>29.01.26 | AWST<br>09:00<br>29.01.26 | CET<br>2:00<br>29.01.26 | EST<br>20:00<br>28.01.26 | PST<br>17:00<br>28.01.26 | Atomic Mechanisms During<br>Plasma Etching                      | David Graves<br>(Princeton University)                     |
| W5  | AEDT<br>tbd<br>.03.26     | ACDT<br>tbd<br>.03.26     | AWST<br>tbd<br>.03.26     | CET<br>tbd<br>.03.26    | EST<br>tbd<br>.03.26     | PST<br>tbd<br>.03.26     | Using the right tool for the job:<br>Comparing ALE, RIE and IBE | Nick Chittock<br>(Oxford Instruments<br>Plasma Technology) |
| W6  | AEST<br>11:00             | ACST<br>10:30             | AWST<br>9:00              | CEST<br>3:00            | EDT<br>21:00             | PDT<br>18:00             | Helicon Double Layer Thruster: A radiofrequency plasma source   | Christine Charles<br>(ANU)                                 |

<sup>\*</sup> Please be aware that the webinar you'll be watching is a pre-recorded session. After the presentation, there will be a live Q&A segment.

SCAN TO REGISTER FOR THE EVENT OR <u>CLICK HERE</u>

